GBAS Approval Process

Honeywell, Precision Landing Systems
Agenda

• FAA System Design Approval
 – Integrity Panel
• Ionosphere Mitigation
• GBAS Approval by Country
• GAST-D (CAT II/III)
GBAS Certification Phases

- **System Design Approval (SDA) – Manufacturer**
 - Ground station system design meets requirements
 - Developed to appropriate design assurance levels
 - Accuracy, integrity, availability requirements satisfied

- **Facility Approval – Owner/ANSP/Airport**
 - Ground station installed properly, safely
 - Approach plates/procedures developed
 - Signal-in-space, coverage volume verified, approaches verified
 - Maintenance technicians trained, certified

- **Service Approval – Operator/Airline**
 - Aircraft equipped
 - Pilot crews trained
 - Control tower personnel trained

- FAA approved 2009
- BAF approved 2011

Bremen, Germany
Newark, New Jersey
Houston, Texas
Malaga, Spain
Sydney, Australia
Frankfurt, Germany
Honeywell, Precision Landing Systems

FAA System Design Approval

Honeywell
GBAS CAT I Approval Steps

- To be approved the system must meet ICAO, FAA and/or other recognized standard
- The standard for SmartPath is the FAA LAAS Specification 3017 which also traces to the ICAO requirements

SYSTEM DESIGN APPROVAL
- System Safety
- System Engineering
- Software Design Assurance
- Hardware Design Assurance
- System Verification
- Commercial Instruction Book
- Training Material
- System SRMD
- Operational Evaluation

FACILITY APPROVAL
- Operations
- Maintenance
- Installation
- Flight Procedures
- Flight Inspection
- Spectrum Management
- Training
- Safety Management

SERVICE APPROVAL
- Aircraft Approval
- ATC Training
- Pilot Training
- Instrument Flight Criteria
Customer Requirements

Requirements
- ICAO SARPS
- FAA Specification 3017

Secondary Requirements
- DO-246C, GBAS Signal in Space
- DO-245A, MASPS for GBAS
- Mil-Std-461E, Electromagnetic Interference
- Mil-Std-810F, Environmental Tests
- FAA-G-2100G, Electronic Equipment
- ED-114, MOPS for GBAS

Process Requirements
- ARP-4754, Certification Considerations
- ARP-4761, Safety Process
- DO-278/DO-178, Software
- DO-254, Hardware
GBAS CAT I Approval Plan

• GBAS Approval Plan
 – Provides the FAA with Honeywell’s plan to achieve design approval for the GBAS system
 – Approval basis includes
 • Requirements
 • Compliance method
 • Data
 • Schedule
 • Responsibilities
GBAS CAT I Approval Plan

- System Engineering Management Plan
- Configuration Management Plan (CMP)
- GBAS System Description Document
- Functional Hazard Assessment (FHA)
- Algorithm Description & Analysis Document
- GBAS System Requirements Specification (SRS)
- Interface Control Documents
- Preliminary System Safety Assessment (PSSA)
- GBAS System Verification Plan
- GBAS System Verification
- GBAS System Safety Assessment

GBAS Approval Summary

DCP PSAA/SAS (Honeywell)

Deos PSAC/SAS (Honeywell)

Remote Power Distribution Panel PSAA/SAS (Honeywell)

GPS Receiver PSAC/SAS (CMC Electronics)

VDB TX/RX PSAC/SAS (Telrad)

DCP PHAC/HAS (Honeywell)

GPS Receiver PHAC/HAS (CMC Electronics)
FAA Approval Process

- System Design Approval Plan CAT I Local Area Augmentation System (LAAS)
 - Provides top-level SDA plans and activities for use by FAA personnel

- System Design Approval Process And Procedures for The CAT I Local Area Augmentation System
 - Defines the evaluation criteria for all reviews necessary to accomplish System Design Approval

- These documents describe the objectives, activities and documentation to:
 - Verify compliance to the requirements
 - Define design data that substantiates compliance
 - Document accepted configuration
Safety Definitions

• Integrity – The probability of transmitting out-of-tolerance navigation data for 3-seconds or longer in any 150-second interval

• Continuity – The probability of an unscheduled interruption of the VHF transmission for 3-seconds or longer in any 15 second interval

• Availability – The proportion of time during which service is provided, computed over a long period (typically a year)
Safety Requirements

• Severe-Major Hazard Classification
 – Approach Integrity due to LGF failure, anomalous environmental or atmospheric effects – 1.5×10^{-7} in 150-seconds
 – Approach Integrity under fault free or no more than Reference Receiver fault – 5×10^{-8} in 150-seconds

• Minor Hazard Classification
 – Unscheduled interruption of VDB transmission (Loss of Continuity) – 1.0×10^{-6} in 15-seconds
 – Unscheduled loss of sufficient Reference Receivers or Ranging Sources (Loss of Continuity) – 2.3×10^{-6} in 15-seconds

• Availability – 0.99 (goal)
LAAS Integrity Panel

• **Purpose**
 – Ensure GBAS integrity monitors address defined GPS threats

• **Team**
 – Honeywell, FAA (10), Subject Matter Experts (11 Key Technical Advisors)

• **Process**
 – 10 years development
 – 20 Technical Interchange Meetings
 – Review development of integrity monitors
 – Approve integrity monitors
Integrity Algorithms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Msg Type 1, 2 & 4</td>
<td>Broadcast Msg Type 1, 2 & 4</td>
<td>Broadcast Msg Type 1, 2 & 4</td>
<td>Broadcast Message Type 11</td>
</tr>
<tr>
<td>Sigma PR Ground</td>
<td>Sigma PR Ground</td>
<td>Phase Center Non-Zero Mean</td>
<td>Phase Center Non-Zero Mean</td>
</tr>
<tr>
<td>Ground System Sigma Monitor</td>
<td>Ground System Sigma Monitor</td>
<td>Ionosphere Anomaly Monitor</td>
<td>Ionosphere Anomaly Monitor</td>
</tr>
<tr>
<td>Troposphere Anomaly Monitor</td>
<td>Troposphere Anomaly Monitor</td>
<td>Ephemeris Monitor</td>
<td>Ephemeris Monitor</td>
</tr>
<tr>
<td>Code Carrier Divergence Monitor</td>
<td>Code Carrier Divergence Monitor</td>
<td>Excessive Acceleration Monitor</td>
<td>Excessive Acceleration Monitor</td>
</tr>
<tr>
<td>Executive Monitor</td>
<td>Executive Monitor</td>
<td>RFI Above the Mask</td>
<td>RFI Above the Mask</td>
</tr>
<tr>
<td>Iono Screening Real Time Inflation</td>
<td>Iono Screening Real Time Inflation</td>
<td>Constellation Alerts</td>
<td>Constellation Alerts</td>
</tr>
<tr>
<td>Broadband RFI Monitor</td>
<td>Broadband RFI Monitor</td>
<td>Cross Correlation Monitor</td>
<td>Iono Gradient Monitor</td>
</tr>
</tbody>
</table>

GAST-C provides foundation for GAST-D

CAT III monitors developed
FAA System Design Approval

- System Design Approval
 - System Safety Assessment
 - Preliminary System Safety Assessment
 - Algorithm Description Document
 - SRMD (System Design Aspects)
 - FMEA/FMES
 - Functional Hazard Assessment
 - System Level Verification
 - Systems Engineering Review
 - SW Design Assurance Reviews
 - Complex HW Design Assurance Reviews
 - HMI Analysis/Report
 - SW Design Assurance Reviews
 - Training Material Review
 - Commercial Instruction Book Review
Ionosphere Mitigation
Ionosphere Threat Model

- Independent ionosphere analysis performed by following countries
 - United States
 - Germany
 - Spain
 - Australia
 - Switzerland
 - Brazil
- Approved Honeywell GBAS addresses mid-latitude iono
- Honeywell is developing an update to address low-latitude iono
Rare Anomalous Iono

\[D = w g \]

\[\text{Front Speed} \ (v) \]

\[\text{Nominal Iono Width} \ (w) \]

\[\text{Iono Front Slope} \ (g) \]

\[\text{Max Iono Delay} \]

\[\text{Gradient} = \text{Slope} \ (g) \]

Results in integrity/position error
Iono Error at Decision Height

200 ft DH

< 6 km
Iono Scintillation

Impacts availability of GBAS
Equatorial Scintillation

- Amplitude and phase of GPS signals change rapidly
- Degradation of measurements
 - Enhanced error
- Loss-of-lock of satellite signals
 - Degradation of geometry, less accuracy, availability issue
- Occurs local sunset to local midnight
GBAS Approval by Country

Honeywell, Precision Landing Systems
Germany

- Country requirements for type certification
- Top level requirements: ICAO
- Honeywell responsible to obtain type certification with BAF
Germany - Requirements

- NfL II-51/08, Notification concerning the requirements for type-certification of GBAS ground facilities as aeronautical radionavigation stations
 - System safety and security
 - ICAO Annex 10, Volume 1
 - ARP4761, Safety Assessment Process
 - Software requirements
 - Developed according to EUROCAE ED-109
 - Technical functional requirements
 - ICAO Annex 10, Volume 1
 - Tests per EUROCAE ED-114
 - Ground and Flight inspections per ICAO Doc 8071 chapter 4
 - All weather operations, NfL I-1/99
 - Remote monitoring
 - Environmental requirements
 - ED-114
 - NfL I-328/01, Guidelines Concerning Obstacle Clearance for Instrument Runways
Germany - Requirements

• NfL II-51/08, Notification concerning the requirements for type-certification of GBAS ground facilities as aeronautical radionavigation stations
 – Facility Documentation
 • Installation manual
 • Technical system description
 • Operators manual
 • Maintenance manual
 – Legal telecommunication requirements
 • Declaration of conformity to radio equipment and telecommunications standards
 – Applicable to Cat I operations
 – Independent audit of Honeywell’s FAA SDA data package
Spain

- Top level requirements: FAA specification
- Aena prepared approval package for certification authority

Malaga
Australia

• Top level requirements: FAA specification
• Airservices Australia prepared approval package for certification authority
• Certification authority CASA participated in FAA audits
Switzerland

• Switzerland approval agency stated that they don’t approve NAVAIDS. It is the responsibility of the ANSP to purchase an approved system.

• Switzerland approval agency is interested to see safety case for how the new NAVAID is integrated into the airport’s operation

• Honeywell provided a documentation package that defines the SmartPath system
Brazil

- Top level requirements: ICAO
- Approval agency ICEA is working with the FAA on approval of the Honeywell SmartPath for low-latitude
 - ICEA participates in FAA audit meetings
- ICEA needs to address iono threat model for Brazil
 - Independent iono analysis
 - Honeywell iono analysis
- Honeywell will submit design approval documents to ICEA
India

- Top level requirements: ICAO
- Honeywell will submit approval documents to Airports Authority of India and approval agency DGCA

Chennai
Honeywell, Precision Landing Systems

GAST-D (CAT II/III)
GAST-D (CAT II/III)

- Honeywell has initiated an FAA approval plan for a GAST-D system
- Core architecture unchanged from GAST-C SLS-4000 system
- Two new monitors for GAST-D
- Requirements prototyped and validated by the FAA