

Honeywell, Precision Landing Systems

# **GBAS Approval Process**



## Agenda

- FAA System Design Approval
  - -Integrity Panel

- Ionosphere Mitigation
- GBAS Approval by Country
- GAST-D (CAT II/III)

## **GBAS** Certification Phases

- System Design Approval (SDA) Manufacturer
  - Ground station system design meets requirements
  - Developed to appropriate design assurance levels
  - Accuracy, integrity, availability requirements satisfied

#### Facility Approval – Owner/ANSP/Airport

- Ground station installed properly, safely
- Approach plates/procedures developed
- Signal-in-space, coverage volume verified, approaches verified
- Maintenance technicians trained, certified

#### Service Approval – Operator/Airline

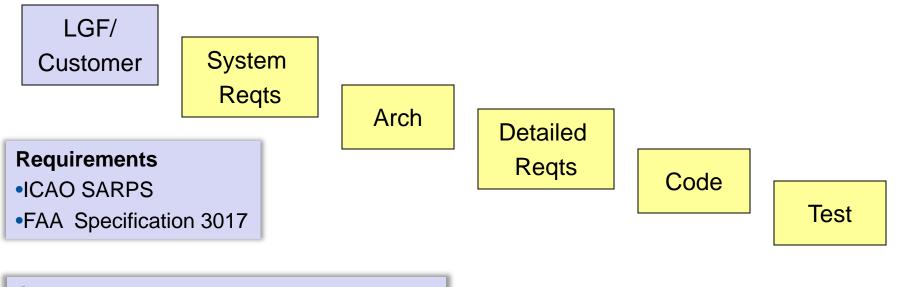
- Aircraft equipped
- Pilot crews trained
- Control tower personnel trained

FAA approved 2009 BAF approved 2011

Bremen, Germany Newark, New Jersey Houston, Texas Malaga, Spain Sydney, Australia Frankfurt, Germany



Honeywell, Precision Landing Systems


# FAA System Design Approval Honeywell

# **GBAS CAT I Approval Steps**

- To be approved the system must meet ICAO, FAA and/or other recognized standard
- The standard for SmartPath is the FAA LAAS Specification 3017 which also traces to the ICAO requirements



### **Customer Requirements**



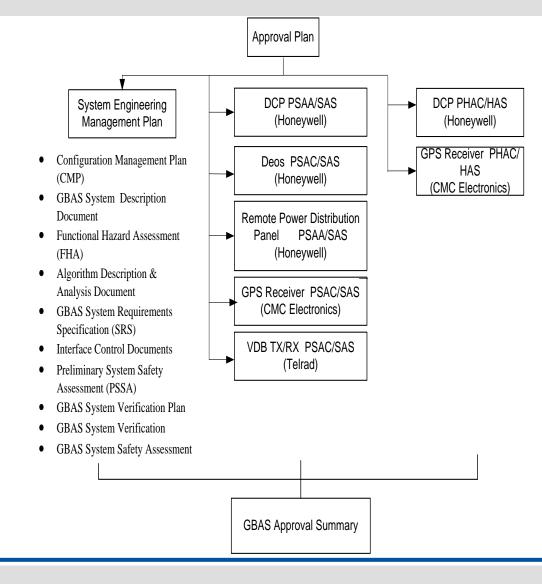
#### **Secondary Requirements**

Honeywell

•DO-246C, GBAS Signal in Space
•DO-245A, MASPS for GBAS
•Mil-Std-461E, Electromagnetic Interference
•Mil-Std-810F, Environmental Tests
•FAA-G-2100G, Electronic Equipment
•ED-114, MOPS for GBAS

# Process Requirements ARP-4754, Certification Considerations ARP-4761, Safety Process DO-278/DO-178, Software DO-254, Hardware

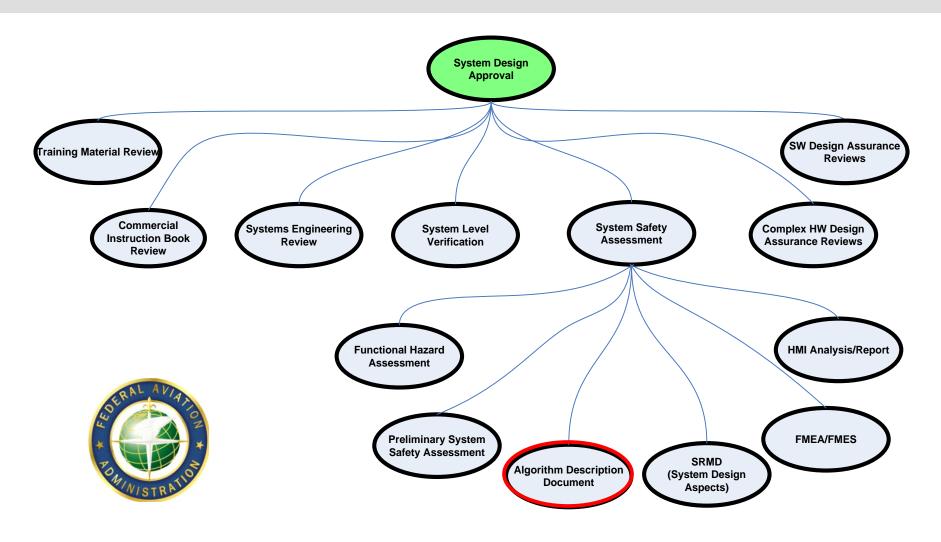
# **GBAS CAT I Approval Plan**


## GBAS Approval Plan

Provides the FAA with Honeywell's plan to achieve design approval for the GBAS system

#### - Approval basis includes

- Requirements
- Compliance method
- Data
- Schedule
- Responsibilities


## **GBAS CAT I Approval Plan**



# FAA Approval Process

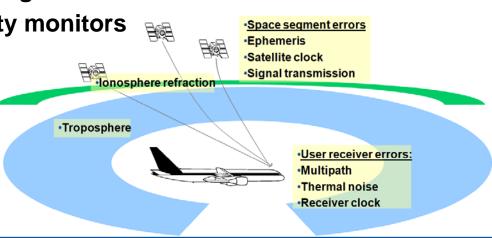
- System Design Approval Plan CAT I Local Area Augmentation System (LAAS)
  - Provides top-level SDA plans and activities for use by FAA personnel
- System Design Approval Process And Procedures for The CAT I Local Area Augmentation System
  - Defines the evaluation criteria for all reviews necessary to accomplish System Design Approval
- These documents describe the objectives, activities and documentation to:
  - Verify compliance to the requirements
  - Define design data that substantiates compliance
  - Document accepted configuration

## **FAA System Design Approval**



# **Safety Definitions**

- Integrity The probability of transmitting out-oftolerance navigation data for 3-seconds or longer in any 150-second interval
- Continuity The probability of an unscheduled interruption of the VHF transmission for 3-seconds or longer in any 15 second interval
- Availability The proportion of time during which service is provided, computed over a long period (typically a year)


# **Safety Requirements**

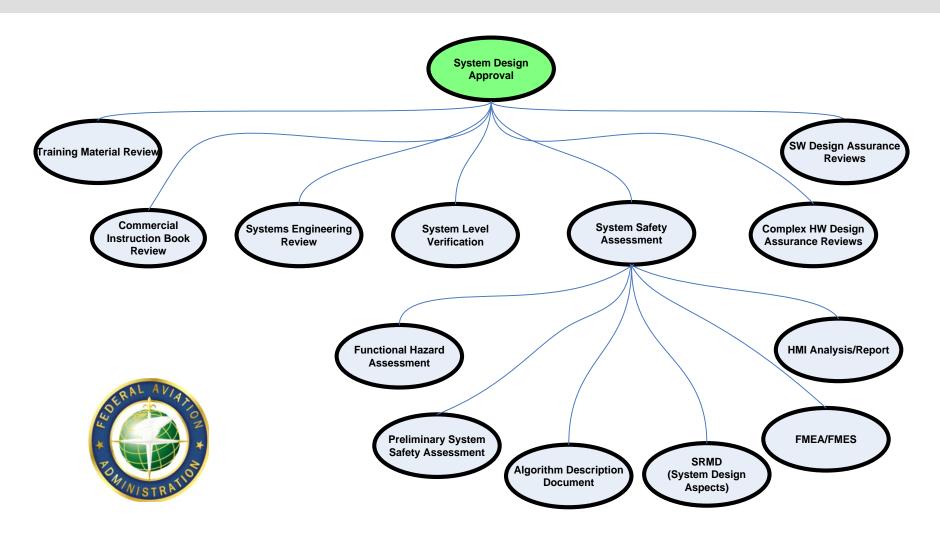
- Severe-Major Hazard Classification
  - Approach Integrity due to LGF failure, anomalous environmental or atmospheric effects – 1.5 x 10<sup>-7</sup> in 150seconds
  - Approach Integrity under fault free or no more than Reference Receiver fault – 5 x 10<sup>-8</sup> in 150-seconds
- Minor Hazard Classification
  - Unscheduled interruption of VDB transmission (Loss of Continuity) 1.0 x 10<sup>-6</sup> in 15-seconds
  - Unscheduled loss of sufficient Reference Receivers or Ranging Sources (Loss of Continuity) – 2.3 x 10<sup>-6</sup> in 15seconds
- Availability 0.99 (goal)

## **LAAS Integrity Panel**

- Purpose
  - Ensure GBAS integrity monitors address defined GPS threats
- Team

- Honeywell, FAA (10), Subject Matter Experts (11 Key Technical Advisors)
- Process
  - 10 years development
  - 20 Technical Interchange Meetings
  - Review development of integrity monitors
  - Approve integrity monitors




# **Integrity Algorithms**

| SCAT I                      | GAST-C                             | GAST-D                             |                                |
|-----------------------------|------------------------------------|------------------------------------|--------------------------------|
| SCAT I Operations (1998)    | CAT I Operations                   | CAT I Operations                   | CAT II/III Operations          |
| Broadcast Msg Type 1, 2 & 4 | Broadcast Msg Type 1, 2 & 4        | Broadcast Msg Type 1, 2 & 4        | Broadcast Message Type 11      |
|                             | Sigma PR Ground                    | Sigma PR Ground                    |                                |
|                             | Phase Center Non-Zero Mean         | Phase Center Non-Zero Mean         |                                |
|                             | Ground System Sigma Monitor        | Ground System Sigma Monitor        |                                |
|                             | Ionosphere Anomaly Monitor         | Ionosphere Anomaly Monitor         |                                |
|                             | Troposphere Anomaly Monitor        | Troposphere Anomaly Monitor        |                                |
|                             | Ephemeris Monitor                  | Ephemeris Monitor                  |                                |
|                             | Signal Deformation Monitor         | Signal Deformation Monitor         |                                |
|                             | Low Satellite Signal Power Monitor | Low Satellite Signal Power Monitor |                                |
|                             | Code Carrier Divergence Monitor    | Code Carrier Divergence Monitor    |                                |
|                             | Excessive Acceleration Monitor     | Excessive Acceleration Monitor     | Excessive Acceleration Monitor |
|                             | Executive Monitor                  | Executive Monitor                  | Executive Monitor              |
|                             | RFI Above the Mask                 | RFI Above the Mask                 |                                |
|                             | Iono Screening Real Time Inflation | Iono Screening Real Time Inflation |                                |
|                             | Constellation Alerts               | Constellation Alerts               |                                |
|                             | Broadband RFI Monitor              | Broadband RFI Monitor              |                                |
|                             |                                    |                                    | Cross Correlation Monitor      |
|                             |                                    |                                    | Iono Gradient Monitor          |

#### **GAST-C** provides foundation for **GAST-D**

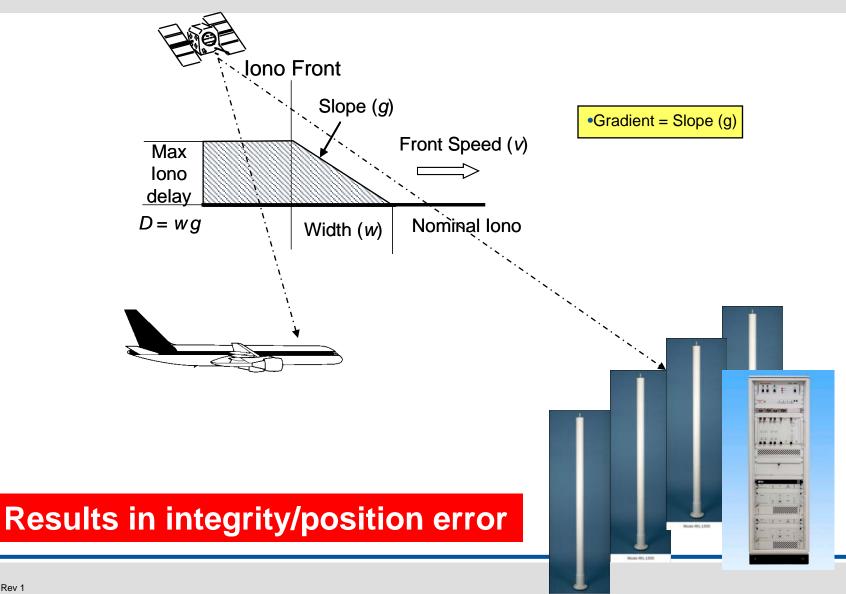
CAT III monitors developed

## **FAA System Design Approval**



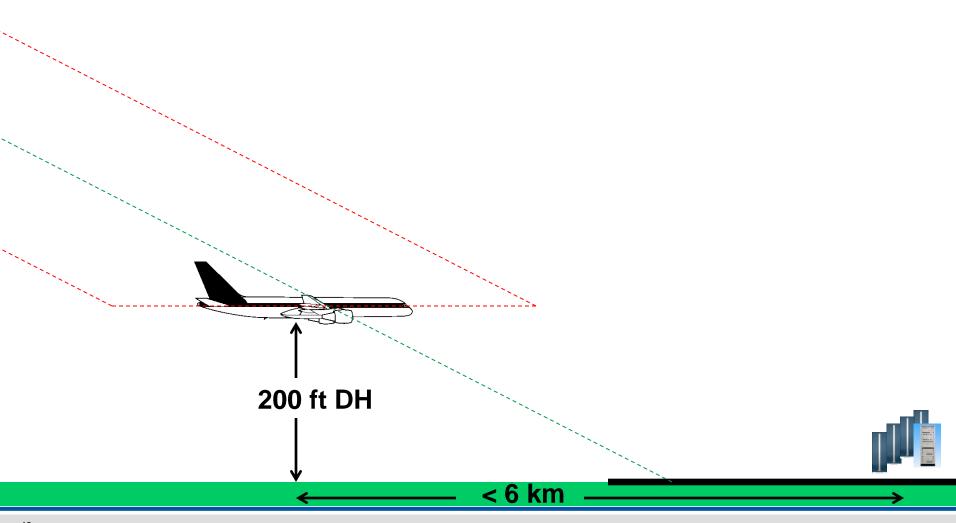


Honeywell, Precision Landing Systems

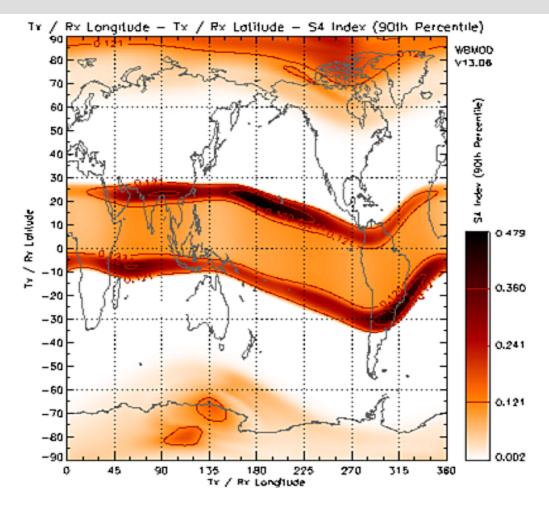

# **Ionosphere** Mitigation



# **Ionosphere Threat Model**


- Independent ionosphere analysis performed by following countries
  - United States
  - Germany
  - Spain
  - Australia
  - Switzerland
  - Brazil
- Approved Honeywell GBAS addresses mid-latitude iono
- Honeywell is developing an update to address low-latitude iono

## **Rare Anomalous Iono**

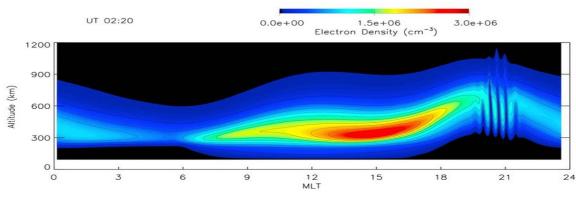


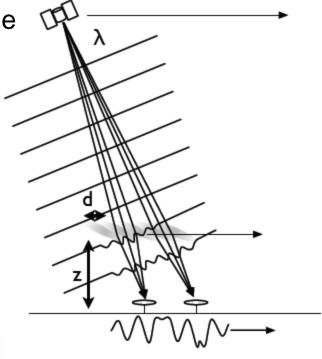



# **Iono Error at Decision Height**



# **Iono Scintillation**





#### Impacts availability of GBAS

# **Equatorial Scintillation**

- Amplitude and phase of GPS signals change rapidly
- Degradation of measurements
  - Enhanced error

- Loss-of-lock of satellite signals
  - Degradation of geometry, less accuracy, availability issue
- Occurs local sunset to local midnight







Honeywell, Precision Landing Systems

# **GBAS Approval by Country**



## Germany

- Country requirements for type certification
- Top level requirements: ICAO
- Honeywell responsible to obtain type certification with BAF



## **Germany - Requirements**

- NfL II-51/08, Notification concerning the requirements for type-certification of GBAS ground facilities as aeronautical radionavigation stations
  - System safety and security
    - ICAO Annex 10, Volume 1
    - ARP4761, Safety Assessment Process
  - Software requirements
    - Developed according to EUROCAE ED-109
  - Technical functional requirements
    - ICAO Annex 10, Volume 1
    - Tests per EUROCAE ED-114
    - Ground and Flight inspections per ICAO Doc 8071 chapter 4
    - All weather operations, NfL I-1/99
    - Remote monitoring
  - Environmental requirements
    - ED-114
    - NfL I-328/01, Guidelines Concerning Obstacle Clearance for Instrument Runways

## **Germany - Requirements**

- NfL II-51/08, Notification concerning the requirements for type-certification of GBAS ground facilities as aeronautical radionavigation stations
  - Facility Documentation
    - Installation manual
    - Technical system description
    - Operators manual
    - Maintenance manual
  - Legal telecommunication requirements
    - Declaration of conformity to radio equipment and telecommunications standards
  - Applicable to Cat I operations
  - Independent audit of Honeywell's FAA SDA data package

# Spain

- Top level requirements: FAA specification
- Aena prepared approval package for certification authority



# Australia

- Top level requirements: FAA specification
- Airservices Australia prepared approval package for certification authority
- Certification authority CASA participated in FAA audits



# **Switzerland**

- Switzerland approval agency stated that they don't approve NAVAIDS. It is the responsibility of the ANSP to purchase an approved system.
- Switzerland approval agency is interested to see safety case for how the new NAVAID is integrated into the airport's operation
- Honeywell provided a documentation package that defines the SmartPath system



# Brazil

- Top level requirements: ICAO
- Approval agency ICEA is working with the FAA on approval of the Honeywell SmartPath for low-latitude
  - ICEA participates in FAA audit meetings
- ICEA needs to address iono threat model for Brazil
  - Independent iono analysis
  - Honeywell iono analysis
- Honeywell will submit design approval documents to ICEA



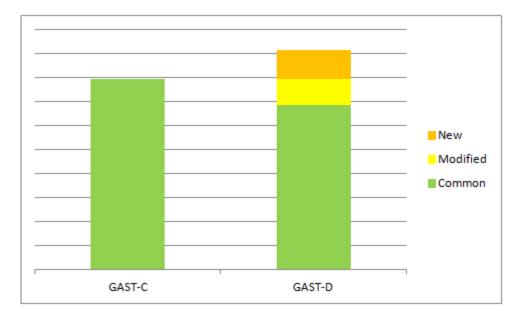


# India

- Top level requirements: ICAO
- Honeywell will submit approval documents to Airports Authority of India and approval agency DGCA






Honeywell, Precision Landing Systems

# GAST-D (CAT II/III)



# GAST-D (CAT II/III)

- Honeywell has initiated an FAA approval plan for a GAST-D system
- Core architecture unchanged from GAST-C SLS-4000 system
- Two new monitors for GAST-D
- Requirements prototyped and validated by the FAA

